
J .  Fluid Mech. (1990), vol. 215, pp.  331-363 
Printed in Great Britain 

331 

The deformation of a liquid drop moving normal 
to a plane wall 

By C. POZRIKIDIS 
Department of Applied Mechanics and Engineering Sciences, R-011, University of California, 

San Diego, La Jolla, CA 92122, USA 

(Received 28 February 1989 and in revised form 17 October 1989) 

The deformation of a viscous drop moving under the action of gravity normal to a 
plane solid wall is studied. Under the assumption of creeping fiow, the motion is 
studied as a function of the viscosity ratio between the drop and the suspending fluid, 
of surface tension, and of the initial drop configuration. Using the boundary integral 
formulation, the flow inside and outside the drop is represented in terms of a 
combined distribution of a single-layer and a double-layer potential of Green 
functions over the drop surface. The densities of these distributions are identified 
with the discontinuity in the interfacial surface stress, and with the interfacial 
velocity. The problem is formulated as a Fredholm integral equation of the second 
kind for the interfacial velocity which is solved by successive iterations. It is found 
that in the absence of surface tension, a drop moving away from the wall obtains an 
increasingly prolate shape, eventually ejecting a trailing tail. Depending on the 
initial drop configuration, ambient fluid may be entrained into the drop along or 
away from the axis of motion. Surface tension prevents the formation of the tail 
allowing the drop to maintain a compact shape throughout its evolution. The 
deformation of the drop has little effect on its speed of rise. A drop moving towards 
the wall obtains an increasingly oblate shape. In the absence of surface tension, the 
drop starts spreading in the radial direction reducing into a thinning layer of fluid. 
This layer is susceptible to the gravitational Rayleigh-Taylor instability. Surface 
tension restricts spreading, and allows the drop to attain a nearly steady hydrostatic 
shape. This is quite insensitive to the viscosity ratio and to the initial drop 
configuration. The evolution of the thin layer of fluid which is trapped between the 
drop and the wall is examined in detail, and with reference to film-drainage theory. 
It is shown that the assumptions underlying this theory are accurate when the 
surface tension is sufficiently large, and when the viscosity of the drop is of the same 
or lower order of magnitude as the viscosity of the ambient fluid. The numerical 
results are discussed with reference to film-drainage asymptotic theories. 

1. Introduction 
The deformation of bubbles, drops, and cells moving under the action of gravity 

in an ambient suspending fluid has a long record in fluid dynamics research (Clift, 
Grace & Weber 1978). The problem has applications in diverse fields of science and 
engineering with characteristic examples the mechanics of emulsions, micro- 
mechanics of blood flow, microphysics of atmospheric precipitation, and convection 
in the Earth’s mantle. The simplest possible configuration consists of a single drop 
moving at  zero Reynolds number in an infinite ambient fluid. Early work by 
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Hadamard and Rybczynski (see Batchelor 1967) showed that such a drop may 
possess a perfectly spherical shape independently of surface tension. The stability of 
this shape was the subject of recent investigations by Kojima, Hinch & Acrivos 
(1984), Koh & Leal (1989), and Pozrikidis (1990). These studies showed that when 
not protected by surface tension, a non-spherical drop may suffer significant 
deformation. Depending on the initial shape, the drop may either develop a 
continuously elongating tail or transform into an almost-steady drop ring. These 
results acquire special significance by noting that in practice, a drop hardly ever 
moves in an infinite medium. The presence of fluid interfaces, solid boundaries, and 
other suspended particles introduce disturbances which cause the drop to deviate 
from the spherical configuration. It is then plausible that these disturbances initiate 
fluid motions which may lead to permanent deformation or even breakup. 
Understanding these motions requires further investigations. 

A convenient prototype for analysing the interaction between a drop and a solid 
boundary is provided by the problem of a single drop moving towards or away from 
an infinite solid plane wall. Apart from its theoretical significance, this simple 
configuration has a direct relevance in a number of applications. For instance, drops 
moving away from a solid wall are encountered in heat and mass transfer processes 
that induce density variations or involve change of phase. Furthermore, spherical 
drops moving away from a solid boundary constitute popular models of cavity-type 
viscous plumes rising in the Earth’s mantle (Whitehead 1988). The behaviour of a 
drop moving towards a solid wall emulates the close-range interaction between 
suspended drops and solid particles in systems of two-phase flow. Examples include 
filtration, and the flow of a dispersed liquid through a porous bed. 

The problem of a drop moving towards or away from a plane wall has become the 
subject of several previous theoretical treatments. These may be cast into two 
general categories. One class of investigations consider the asymptotic limit of large 
surface tension, ensuring that the drop maintains a spherical or a nearly spherical 
shape throughout its evolution (Bart 1968 ; Chervenivanova & Zapryanov 1985, 
1987). A second class of investigations consider the asymptotic behaviour of a drop 
settling on the wall, with primary focus on the evolution and breakup of the thin film 
which is trapped between the drop and the wall (Hartland 1967, 1969; Hartland & 
Robinson 1977; Dimitrov & Ivanov 1978; Jones & Wilson 1978; Wu & Weinbaum 
1982; Lin & Slattery 1982; Chen 1984; Yiantsios & Davis 1990). It should be noted 
that the behaviour of this film is of considerable importance for it determines the 
overall shape of the drop as well as the time a t  which the drop adheres on the wall. 
This second class of studies consider the asymptotic limit of small Bond numbers 
B = a21ApJg/y (where a is the equivalent drop radius, Ap is the density difference 
between the drop and the suspending fluid, and y is the surface tension) for which the 
deformation becomes important only when the  drop is very close to the wall. 

In this paper we undertake a numerical investigation of the deformation of a drop 
moving towards or away from a solid plane wall, relaxing the simplifying 
approximations adopted in previous studies. The two main assumptions of our 
analysis are that the drop moves normal to the wall, ensuring that the motion is 
axisymmetric, and that the flow occurs under conditions of creeping motion. Another 
assumption is that the interface between the drop and the suspending fluid is clean 
and thus it is characterized by constant surface tension. In  our parametric 
investigations we seek to assess the effects of the viscosity ratio between the drop and 
the suspending fluid, of surface tension, and of the initial position and shape of the 
drop. Our strategy entails the numerical solution of a series of initial-value problems 
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in which a drop is released from a fixed location, and is free to rise or fall under the 
influence of gravity in a direction normal to the wall. 

In the case of a drop moving towards the wall, one central goal of our investigation 
is to describe the birth and evolution of the fiIm which is trapped between the settling 
drop and the wall. Experimental studies have shown that as a drop approaches a wall 
its lower surface flattens, eventually yielding an axisymmetric dimple. Despite 
persistent theoretical efforts, the exact mechanism of the formation and evolution of 
the dimple is not understood in a satisfactory manner. One of the problems of 
previous analyses is that  they require information regarding the shape of the drop at 
an arbitrary initial instant, as well as the asymptotic shape of the drop beyond the 
rim of the dimple (Yiantsios & Davis 1990). In  the asymptotic limit of small Bond 
numbers both of these shapes may be taken to be spherical, but in the more general 
case of moderate and large Bond numbers they are both determined by the history 
of drop deformation. The main objective of our investigation is then to shed light on 
the evolution of the trapped film under general flow conditions. Unfortunately, our 
numerical procedure is not able to produce high-accuracy results when surface 
tension is large or when the film is very thin, and thus it does not permit a direct 
comparison between our numerical results and previous asymptotic theories at small 
Bond numbers. Nevertheless, our results are able to validate the lubrication 
approximation, one of the central assumptions of the popular film-drainage theory. 

To carry out our numerical investigations we develop a boundary integral 
formulation similar to that introduced by Rallison & Acrivos (1978) for unbounded 
flow. In  our formulation we introduce two novel features. First, we develop a flow 
representation in terms of a compound distribution of single-layer and double-layer 
potentials. The densities of these potentials are proportional to the discontinuity in 
the surface stress across the fluid interface, and to the interfacial velocity. This 
representation differs from the classical boundary integral representation in which 
the density of the distributions is proportional to the surface stress and to the 
interfacial velocity. Our representation circumvents the need for solving an 
intermediate integral equation for the interfacial surface stress in order to construct 
the flow. By applying the boundary integral equation at the fluid interface we 
produce an integral equation for the interfacial velocity, similar to that derived by 
Rallison & Acrivos (1978). In our analysis, we show that this equation has a unique 
solution and a convergent resolvent for all finite values of the viscosity ratio between 
the drop and the suspending fluid. The second novel feature of our analysis is the 
numerical solution of the derived Fredholm integral equation of the second kind, by 
means of successive iterations. The advantages of this procedure include reduced cost 
of computations, high accuracy, and ease of implementation as discussed in a 
previous paper (Pozrikidis 1990). 

In  developing our boundary integral formulation, we take the opportunity to 
discuss certain properties of the Green function for Stokes flow bounded by a solid 
plane wall. Use of these Green functions in conjunction with boundary integral 
representations has been quite popular in elastostatics, but rather scarce in low- 
Reynolds-number hydrodynamics (see for instance Tran-Cong & Phan-Thien 1989). 
Using these Green functions allows a substantial reduction of the domain of the 
boundary integral representation. For the problem considered in this paper, the 
domain of the derived integral equation is reduced simply onto the drop surface. 

In  summary, the goal of this paper is to present a numerical investigation of the 
deformation of a drop moving towards a plane wall, viewed as a paradigm of 
deformation induced by the presence of a solid boundary. In  $2 we present the 
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problem formulation and strategy of numerical solution. In $ 3  we present and discuss 
our numerical results, and in $4 we summarize our conclusions. 

2. Analysis 
2.1. The Green function for $04 bounded by a plane wall 

To prepare the ground for our analysis, we introduce the Green-function tensor S 
describing Stokes flow due to a point force in a domain bounded by a planar solid wall 
(Lorentz 1906, see Happel & Brenner 1986, p. 87). Thus, we state that 

U i ( x )  = Sij(x,  xo) aj (2.1) 

represents the velocity field due to a point force of strength 8na placed at the point 
xo, in the presence of a solid wall placed at x = w. B y  construction, S is required to 
vanish along the wall, that is 

Si j (x ,x , )  = 0 when x = w. (2.2) 

Blake (1971) showed that S may be expressed in terms of a Stokeslet, and a finite 
collection of image singularities including an image Stokeslet, a potential dipole, and 
a Stokes-doublet : 

S(x,x,) = S S T ( R ) - S S T ( P )  +2h2SD(P)-2hSSD(P), (2.3) 

where h = xo-w is the distance of the point force from the wall, f = x-x,, 
P = x--xiM, and xiM = (2w-x,, yo,zo) is the image of x, with respect to the wall. 
The tensor SST represents the free-space Stokeslet, whereas the tensors SD and 
SSD represent potential dipoles and Stokes doublets, and are defined as 

The plus sign corresponds t o j  = 2 , 3  for the y- and z-axes, and a minus sign t o j  = 1 
for the x-axis. In Appendix A we show that the tensor S satisfies the symmetry 

In fact, we show that this property is shared by all Green functions of the equations 
of creeping motion in domains that are bounded by any arbitrary solid surface. 

The pressure and stress fields corresponding to the fundamental flow (2.1) may be 
written in terms of the pressure vector p and the stress tensor T as 

By analogy with (2.3) we write 

p, (x ,  x,) = pF'(f) -p:'(P) - 2 h p 3 P )  (2.8) 

and T(x ,x , )  = TST(9)- PT(P)+2h2T"(P)-2hPD(P), (2.9) 

where (2.10a, b)  

(2.11) 
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All S, p ,  and T vanish when the Green function is placed right on the wall, that is 
when xo = w. 

In  Appendix A we show that the velocity fields 

and 

(2.13) 

(2.14) 

where P and g are constants, are legitimate singular solutions to the equations of 
creeping motion. Both of these velocity fields vanish along the wall at xo = w.  
Physically, (2.13) expresses the velocity field due to a point source of strength -8np 
located at  the point x, in the presence of the solid wall. For later use, we write the 
pressure field corresponding to the flow (2.14) in the symbolic form 

P(xo) = Pnij(xo, X) $if- (2.15) 

The exact expression for the tensor n is omitted in the interest of space. 

2.2. Integral representation 

We consider the motion of a viscous drop a t  vanishing Reynolds number in the 
vicinity of a solid planar wall, as illustrated in figure 1. We denote the drop with the 
subscript 2,  and the ambient fluid with the subscript 1 .  Physical reasoning dictates 
that the velocity is continuous across the surface of the drop. The interfacial surface 
stress may undergo a discontinuity whose magnitude depends on the physical 
properties of the fluids, and on the physico-chemical characteristics of the fluid 
interface. 

We begin our analysis by writing down the boundary integral equation for the flow 
external to the drop. Accounting for the fact that the flow vanishes a t  infinity, we 
obtain 

ujf’(xo) = -- f m) S i , ( X ,  xo) ‘s 8nPl Drop and Wall 

+q u i ( x )  q j k ( x ,  r i k ( x )  ds(x)* (2*16) 
8x Drop and Wall 

In this equationfis the surface stress,f= a-ii, where tr is the modified stress tensor 
defined with respect to the modified pressure Pmod = P-pg-x .  The unit normal 
vector fi  is directed towards the suspending fluid, as illustrated in figure 1 .  The 
kernels S and Tare the Green functions for the velocity and the stress, and are given 
by (2.3) and (2 .9) .  Because of (2 .2) ,  and of the requirement that u vanishes along the 
wall, the domain of integration in (2.16) may be reduced onto the drop surface. The 
symmetry property (2.5) then allows us to identify the single-layer potential on 
the right-hand side of (2.16) with the flow induced by an interfacial distribution of 
the Green functions of strengthf 

Next, we consider the test flow S&, x,) u, where the point xo is located exterior 
to the drop, and a, is an arbitrary constant. Applying the reciprocal theorem for this 
test flow and the internal flow d2) (Happel & Brenner 1986, 93-5), we obtain 

f ~2’ (X)8~j (X ,  X,) dS(x) -P2 U i ( X )  q,k(x, XO) ‘&(X) dx(X) = 0. (2.17) 
[Drop 
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FIGURE 1.  Schematic representation of a drop moving in the vicinity of a plane wall 
located at x = w .  

Combining (2.16) and (2.17) yields 

(2.18) 

where Af is the jump in surface stress across the fluid interface equal to Af = 
(ol - b 2 ) - A ,  and h is the viscosity ratio h = ,u2/,u1. Effectively, we have managed to 
express the external flow as a combined distribution of single-layer and double-layer 
potentials. The densities of these potentials are proportional to the discontinuity in 
the interfacial surface stress, and to the interfacial velocity. The pressure field 
corresponding to (2.18) is given by 

where p and n were given by (2.8) and (2.15). 

representation for the internal flow : 
Repeating the above procedure for the internal flow we derive an integral 

(Pozrikidis 1990). Note that this is identical to (2.18), except that the right-hand side 
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is divided by the viscosity ratio A. The pressure field corresponding to (2.20) is given 
by (2.19), except that the right-hand side is divided by A. 

As a final step, we consider the limiting behaviour of (2.18) and (2.20), as the point 
xo approaches the boundary of the drop from either side. The double-layer integrals 
in these equations may be written in terms of their Cauchy principal value as 

% ( X )  T,r(x, xo) i k ( 4  cwx)  
JDrop PVI 

= +47~ ut(x0) + u((x) %jk(x, xo) f l k ( ~ )  dS(x), (2.21) 
JDrop 

where the plus sign is for the external side, the minus sign is for the internal side, and 
PVI  stands for the Principal Value Integral. Substituting (2.21) into (2.18) or (2.20), 
we obtain the equation 

where /3 = (1 - A ) / ( l  + A ) .  Specifying Af renders (2.22) a Fredholm integral equation 
of the second kind for the interfacial velocity u. This is similar in nature to the 
equation developed by Rallison & Acrivos (1978) for unbounded flow. In the case of 
a drop moving under the influence of gravitational and capillary forces we have 

Af = [Apgx+yV-ri]A, (2.23) 

where y is the surface tension of the interface (assumed to be isotropic and uniform), 
Ap = p2-p1, and the gravity vector points towards the negative x-axis. 

To assess the uniqueness of solution of the integral equation (2.22), but also to 
investigate the feasibility of an iterative procedure of solution, we consider the 
corresponding homogeneous equation and inquire whether it possesses any real or 
complex eigenvalues /3. Following an analysis similar to that presented by Pozrikidis 
(1990) for unbounded flow, we find that (2.22) has only real eigenvalues with 
magnitude greater or equal to one; /3 = _+ 1 are two eigenvalues corresponding to 
A =!= 0, co, with one and six eigensolutions respectively. Details of the analysis are 
omitted in the interest of space. These results guarantee that (2.22) has a unique 
solution, and that it can be successfully solved in an iterative manner for any finite 
value of the viscosity ratio A. 

Having solving the integral equation (2.22) for the interfacial velocity, we may 
compute the velocity field outside the drop using either one of the integral 
representations (2.16) or (2.18) (similar equations apply for the internal flow). Using 
the first representation requires knowledge of the boundary velocity as well as of the 
boundary surface stress f on either side of the fluid interface. The former is known, 
and the latter may be computed by applying (2.16) at the interface, and then, by 
solving the resulting Fredholm integral equation of the first kind for f (Stone & Leal 
1989; Chi & Leal 1989; Ascoli, Dandy & Leal 1990). In contrast, using the 
representation (2.18) permits the computation of the velocity field directly from the 
calculated interfacial velocity, and from the known discontinuity in interfacial 
surface stress. Thus, it offers increased accuracy and significant savings in the cost 
of the computations, and for these reasons, it is adopted in our computations. 
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2.3. Procedure of numerical solution 
For convenience, we rewrite (2.22) in the symbolic form 

U’ = - - - A  1 1  +-B P 
4nplh+1 ’ 47c ’ (2.24) 

where A and B represent the single-layer and double-layer potential respectively. 
Both A and B are singular, and their accurate evaluation requires special attention. 
To remove the singularity of the double-layer potential, we use the identities 

( 2 . 2 5 ~ )  

lrlp q j k ( x ,  xO)  i k ( x )  dS(x) = ‘ij, (2.25 6) 

where PT and T are the stress tensor of the free-space Stokeslet and of the Green 
function respectively. These allow us to write 

Bj(xo) JDrop %(x) q j k ( x 5  x o )  ‘&(X) m(x) cj(xo) -4x uj(xo)y 
PVI 

(2.26) 

where 
r 

+ J Tmjk(x,  x ~ ) - ~ m ( x O )  q k ( x ,  X0)I dfi(x), (2.27) 
Drop 

and m = 2,3.  The two integrals in (2.27) are regular and may be computed using a 
standard integration procedure. It should be noted that the above choice of 
desingularization facilitates the computation of the integrals in the case of 
axisymmetric motion. 

Exploiting the assumption of axisymmetry , we now perform all integrations in the 
azimuthal direction, reducing the surface integrals into line integrals over the drop 
contour in a meridian plane. Referring to cylindrical polar coordinates, we find for 
the single-layer potential 

Aa(xo) = - ( ~ + + V ~ i i ) M ~ ~ ( x , x ~ ) 6 ~ ( x ) d l ( x )  1 (2.28) 

and for the double-layer potential 

Ba(x0) Ca(x0) - 4 ~  ua(xO), ( 2 . 2 9 ~ )  

Ca(x0) = I {[u1(x) -Ul(x0)1 qalp(x, x0) +u, (x)  Qazp(X, xo)) gp(x) dl(x) 
S 

-u2(x0) J s~&,  xo) .1;,(x) d W  (2.296) 

where Greek indices take the values 1 and 2 for the 2- and the a-direction 
respectively. The matrices M, q,  and p are given in Appendix B in a form suitable 
for computer implementation. 
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Our numerical procedure for solving the integral equation (2.24) is similar to that 
developed by Pozrikidis (1990). Briefly, this entails representation of the drop 
contour using a set of marker points, and discretization of the drop boundary into 
a set of circular arcs defined by three successive marker points. As x -+ x,, the single- 
layer potential (2.28) presents a logarithmic singularity which we subtract-off and 
integrate analytically over a circular arc. We compute all regular integrals using the 
six-point Gauss-Legendre quadrature over each arc. Finally, we solve the integral 
equation (2.24) by successive iterations, that is by guessing an initial interfacial 
velocity distribution, computing the right-hand side of the integral equation, and 
then, replacing the initial with the newly computed distribution. The iterations 
terminate when all components of two successive iterants differ by an amount which 
is less than a specified minimum. The success of this procedure hinges upon the fact 
that (2.22) has a convergent Neumann series, as guaranteed by the lack of real or 
complex eigenvalues of the corresponding homogeneous equation. Having computed 
the interfacial velocity, we advance the position of the marker points using the 
modified Euler’s method. An essential component of the numerical procedure is the 
use of an adaptive point redistribution technique that allows us to pursue the 
development of regions of high curvature while maintaining the number of points a t  
a moderate level. Details of this technique are given by Pozrikidis (1990). For 
moderate drop deformations, 24 to 32 points along the drop contour were typically 
used. For large deformations, a typical calculation started with 24 points and ended 
with 70 points. At high values of the surface tension, numerical instabilities set in 
requiring a proportional decrease in the size of the time step and an exceedingly large 
amount of computational time (see Pozrikidis 1990). These instabilities placed limits 
in the parametric space of our investigations. 

To monitor the accuracy of the calculations, after each time step we computed the 
drop volume. For vanishing surface tension, the maximum change this volume was 
always less than 1.00%. For finite surface tension, the change in volume was more 
pronounced, and in extreme cases, it escalated up to 2%. Furthermore, to ensure 
that the computed drop shapes were accurate to plotting line width, we carried out 
a number of test computations varying the number of points and the size of the 
time step. We also performed favourable comparisons with available analytical 
solutions, as discussed in the next section. All computations were performed on the 
CRAY/XM-P computer of the San Diego Supercomputer Center. A complete run 
consumed approximately 45 min of CPU time. 

3. Results and discussion 
We consider the axisymmetric deformation of a viscous drop moving towards or 

away from an infinite solid wall. We reduce all flow variables using as characteristic 
lengthscale the equivalent drop radius a, and as characteristic timescale pJagl ApI, 
where Ap = p2-p1. The evolution of the drop is a function of the initial shape of the 
drop, the initial distance from the wall, and of two physical parameters : the viscosity 
ratio h = pz/,ul, and the inverse Bond number r = r/azlApI g. To reduce the 
dimensionality of our parametric investigation, we consider drops having an initial 
shape of a prolate or oblate spheroid with their axis normal to the wall. More 
specifically, we stipulate that at the initial instant, the distance between the centre 
of the drop and the wall is equal to 8, and the shape of the drop is described by 

r = a(l+~P,(cosO)), 
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FIQTJRE 2.  (a)  Successive stages in the evolution of an initially spherical drop rising away from a 
plane wall, for A = 1, r = 0,  S = 2.0. The time is indicated on the left of each frame. (b )  Streamline 
pattern at  t = 37.50. 

where P2 is a Legendre polynomial. The value of a is chosen such that the 
dimensionless volume of the drop is equal to 2 ~ .  The evolution of the drop is a 
function of the four parameters E ,  6, A,  r, and of the direction of motion. 

3.1. Drops moving away from the wall 

First, we consider drops moving away from the wall. In  figure 2(a )  we present 
characteristic stages in the evolution of a spherical drop, initially located a t  6 = 2, 
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FIGURE 3. Two stages in the evolution of an initially prolate drop with ~ = 0 . 2 0 ,  rising away 
from a plane wall, for A = 1, r = 0, S = 2.0. The time is indicated on the left of each frame. 

FIGURE 4. Successive stages in the evolution of an initially oblate drop with E = -0.20, rising away 
from a plane wall, for h = 1, r = 0, 6 = 2.0. The time is indicated on the left of each frame. 

with h = 1 and vanishing surface tension r = 0. In the initial stages of deformation 
the drop obtains a spindle-like shape with a nearly spherical front and a conical back. 
The bottom part of the drop undergoes continuous elongation partly due to its self- 
induced motion, and partly due to extensional flow associated with the presence of 
the wall. As time progresses, a certain amount of fluid escapes from the drop to form 
an elongating tail, while the main body of the drop tends to recover the spherical 
shape. As the drop moves away from the wall, the flow due to the presence of the wall 
becomes of decreasing importance, and the evolution of the drop becomes very 
similar to that of a prolate drop rising in an infinite fluid. The slight indentation of 
the drop contour near the base of the tail, shown in figure 2 (a) a t  t = 37.50, suggests 
that a t  large times, a thin filament of ambient fluid will enter the drop near the base 
of the tail. Asymptotically, a t  large times, the drop is expected to obtain a composite 
shape consisting of (i) an almost-spherical main body that contains a spiralling thin 
filament of entrained ambient fluid, and (ii) a continuously elongating tail (Pozrikidis 
1990). To visualize the flow field generated by the motion of the drop, in figure 2 ( b )  
we present the instantaneous streamline pattern a t  t = 37.50. The most notable 
feature of this pattern is a family of closed streamlines composing a viscous eddy. 
The axial and radial positions of the centre of this eddy are approximately equal to 
the axial distance of the centre of the drop from the wall. Far away from the drop, 
the flow field resembles that induced by a ring of Stokeslets oriented in the axial 
direction (Liron & Blake 1981, $3). 

To illustrate the effect of the initial shape of the drop, in figures 3 and 4 we present 
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FIQURE 5. The vertical speed of the top of the drop uD, reduced by the terminal velocity of the drop 
U, as a function of time, for A = 1, r = 0, 6 = 2.0. The curve for the spherical non-deforming drop 
was derived from the theory of Bart (1968). 

t 

characteristic stages during the evolution of two initially spheroidal drops with E = 
0.20 and -0.20, and for S = 2 ,  h = 1, and r = 0. The evolution of the prolate drop, 
shown in figure 3, is qualitatively similar to that of the spherical drop shown in figure 
2 ( a ) .  A comparison between figures 2 (a)  and 3 indicates that increasing the initial 
eccentricity of the drop increases the amount of drop fluid that escapes into the tail. 
This behaviour is similar to that of prolate drops evolving in an infinite ambient fluid 
(Pozrikidis 1990). The evolution of the oblate drop, shown in figure 4, presents 
certain novel features. To interpret these features, it  is helpful to keep in mind that 
the image flow due to the presence of the wall tends to  elongate the drop in the axial 
direction, causing it to obtain a prolate shape. In contrast, the self-induced motion 
of the drop associated with the oblate shape tends to elongate in the radial direction, 
causing it to obtain an increasingly more oblate shape (Pozrikidis 1990). Figure 4 
suggests that these two counteracting mechanisms do not cancel each other but, 
instead, they work in a synergistic fashion. The net result, is the formation of a 
hollow dimple a t  the bottom of the drop. Ambient fluid is entrained into the drop 
along the centre of the dimple, and is convected towards the front of the drop 
transforming the drop into a ring. The lips of the dimple are extended by the local 
stagnation-point flow producing a thin axisymmetric filament of drop fluid. 

Having presented three characteristic scenarios of evolution, we now consider how 
the deformation of the drop affects its speed of rise. In  figure 5 we plot the axial 
velocity of the top of the drop as a function of time for the three cases depicted in 
figures 2 ( a ) ,  3 ,  and 4. I n  this figure we have also included the theoretical curve of 
Bart (1968) for a non-deforming spherical drop (see also Appendix C ) .  We observe 
that at small times, the speed of the deforming spherical drop, e = 0, is higher than 
that of either the oblate or the prolate drop, 6 = 0.20, -0.20. This may be attributed 
to the reduced drag associated with the minimal surface area of the spherical shape. 
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FIGURE 6. Three stages in the evolution of an initially spherical drop rising away from a plane 
wall, for h = 1, r= 0.10, 6 = 2.0. The time is indicated on the left of each frame. 

At large times, the prolate drop rises a t  a notably slower rate than either the 
spherical or the oblate drop. This is attributed to  the reduced volume of the main 
body of this drop, as well as to the increased surface area of the developing tail. The 
oblate drop rises faster than the spherical or the prolate drop. This may be attributed 
to the compact shape maintained by this drop throughout its evolution. Comparing 
now our numerical results with the theoretical predictions of Bart, we find that a t  the 
initial stages of the motion, a deforming drop rises faster than a non-deforming drop. 
This suggests that the increase in drag due to the increasing surface area of the 
deforming drop is overcompensated by the decrease in drag due to  the drop 
deformability. At large times, the numerical and theoretical curves show good 
agreement. Overall, we may conclude that the theory of non-deforming drops 
provides a reasonable estimate for the speed of rise of deforming drops, and may 
be used safely in engineering design. 

Proceeding with our parametric investigation, we consider the effect of surface 
tension while maintaining the viscosity ratio at the convenient value A = 1. We thus 
direct our attention to  an initially spherical drop located a t  S = 2, and examine the 
evolution as a function of the inverse Bond number r. I n  figure 6 we show typical 
evolution stages for r = 0.10. It is clear that finite surface tension stabilizes the drop 
against the deforming action of the wall. This value of r is not large enough to 
suppress the formation of a tail, although it  is capable of drastically reducing the size 
of the tail. It is also clear that finite surface tension prevents drop filamentation. 
Increasing r to 0.50 stabilizes the drop, allowing it to maintain its compact shape 
throughout its motion. The effect of surface tension on the speed of rise of the drop 
is illustrated in figure 7. The curve labelled r = 00 is based on the assumption of a 
perfectly spherical shape, and was derived from the theory of Bart (1968). It is 
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FIGURE 7. The vertical speed of the front of the drop uD, reduced by the terminal drop velocity U ,  
as a function of time, for A = 1, E = 0, 6 = 2.0. The curve labelled co was derived from the theory 
of Bart (1968). 
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FIQURE 8. Successive stages in the evolution of an initially spherical drop rising away from a 
plane wall, for A = 0.10, r = 0, 6 = 2.0. The time is indicated on the left of each frame. 

interesting to note that the velocity a t  the initial instant is independent of r. This 
is a unique feature of the spherical shape. As r is increased, the velocity curves shift 
towards the theoretical limit r = 00. There is an initial relaxation period whose 
duration is reduced as r increases. At large times, all curves show reasonable 
agreement with the theoretical curve of Bart. 
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FIGURE 9. Successive stages in the evolution of an initially spherical drop rising away from a 

plane wall, for h = 5, r = 0, 6 = 2.0. The time is indicated on the left of each frame. 

Next, we examine the effect of the viscosity ratio A. In  figures 8 and 9 we present 
characteristic stages in the drop evolution for h = 0.10 and 5. We observe that 
decreasing h makes the drop more flexible, and hence, more susceptible to the 
deforming action of the wall. Increasing A causes a proportional increase in the size 
of the developing tail, a behaviour similar to that of prolate drops moving in an 
infinite ambient fluid (Pozrikidis 1990). Additional calculations have shown that the 
effect of surface tension is similar to that for the case h = 1, as discussed above. 

Figures 8 and 9 indicate that the rate of drop deformation is a strong function of 
the viscosity ratio A ,  and that increasing h increases the timescale of deformation T. 
This is consistent with linear analysis for a slightly deformed drop moving in an 
infinite ambient fluid (Kojima et al. 1984) indicating that T is proportional to 
a(h  + l ) /U,  where U is the terminal velocity of the drop. Unfortunately, a similar 
linear analysis for a drop evolving in the presence of a wall is considerably more 
involved, preventing the derivation of a simple scaling law (Chervenivanova & 
Zapryanov 1985). To quantify the dependence of T on A ,  we define as an index of the 
overall drop deformation, the size of the drop in the vertical axial 1. In figure 10 we 
plot 1 as a function of reduced time t* = tU/a(A+ 1) for h = 0.10, 1.0, and 5.0. We 
observe that a t  small times and up to approximately t* = 1, the three curves lie close 
to each other, indicating that ( A  + 1)  a/U is the proper timescale of deformation. This 
scale becomes invalid at later times. Asymptotically a t  large times, the rate of 
deformation becomes proportional to the speed of rise, and the slope of the curves in 
figure 10 becomes approximately equal to h + 1. 
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FIQURE 10. The size of the drop in the axial direction as a function of reduced time, for 
different viscosity ratios. The slope of the straight lines a t  large times is equal to A+ 1. 

3.2. Drops moving towurds the wall 

In the second part of our investigation we consider drops settling towards the wall. 
We start by considering the deformation of a spherical drop initially located a t  6 = 8, 
with A = 1 and r = 0, depicted in figure 11 (a).  I n  the initial stages of the motion, 
the presence of the wall introduces a disturbance flow which causes the drop to 
deform into an oblate spheroid ( t  = 10). This initiates a hydrodynamic instability 
which causes the development of a dimple a t  the top boundary of the drop ( t  = 20, 
30) (Pozrikidis 1990). The bottom part of the drop maintains a nearly spherical shape 
during this stage of motion. As the drop approaches the wall, it slows down, and 
starts spreading in the radial direction ( t  = 45). The bottom boundary of the drop 
flattens out, and a thin layer of ambient fluid is trapped between the drop and the 
wall. At the same time, the top boundary of the drop levels out under the influence 
of the flow generated by the radial spreading ( t  = 60). At later times, the bottom 
boundary of the drop develops an axisymmetric dimple with centre on the axis of 
motion ( t  = 70.5). At the initial stages of spreading, the thickness of the film trapped 
beneath the drop decreases in a uniform fashion. As time proceeds, however, fluid in 
the film moves towards the centre of the dimple causing an increase in the thickness 
of the film at the centreline, and generating a localized protrusion ( t  = 110~5,238). 
We recall now that the film beneath the drop is gravitationally unstable, for it is 
located below the high-density drop fluid. As a result, it becomes susceptible to 
gravitational instabilities which tend to amplify the size of the formed protrusion 
( t  = 313). The details of this motion may be better understood by considering 
the instantaneous streamlines shown in figure l l ( b ) .  The presence of a toroidal 
eddy attached to the wall is a clear indication of upward fluid motion. 

To illustrate the effect of the initial location of the drop on its deformation, in 
figure 12(a) we present three characteristic stages in the evolution of an initially 
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FIGURE 11.  (a)  Successive stages in the evolution of an initially spherical drop falling towards a 
plane wall from a vertical distance 6 = 8.0, for A = 1, r = 0. The time is indicated on the left of each 
frame. ( b )  The instantaneous streamline pattern at t = 80.5. 

spherical drop released from 6 = 2, with h = 1, and r = 0. In this case, the top 
boundary of the drop remains convex throughout the motion. As the drop starts 
spreading over the wall, a dimple develops at  its lower boundary in a process similar 
to that illustrated in figure 11 (a).  Comparing figure 12 (a), t = 40 with figure 11 (a), 
t = 70.5, suggests that changing the initial location of the drop produces only subtle 
variations in the shape of the drop at the initial stages of spreading. Note, however, 
that the thickness of the drop at the centreline in figure 11 (a )  is slightly reduced 
owing to the dimpling of the top boundary of the drop during the early stages of 
motion. Comparing figure 12 (a ) ,  t = 292.5 with figure 11 (a ) ,  t = 313, suggests that 
subtle variations in the drop shape may have a profound effect on the future of the 
thin layer which is trapped beneath the drop. The reason for this behaviour becomes 
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FIGURE 12. (a) Successive stages in the evolution of an initially spherical drop falling towards a 
plane wall from a vertical distance 8 = 2.0, for h = 1 ,  r = 0, S = 2.0. ( b )  The instantaneous 
streamline pattern at t = 70. 

clear by comparing the instantaneous streamline pattern shown in figure 12 ( b )  with 
that shown in 11 ( b ) .  In the former case, there is no eddy attached to wall, suggesting 
that the trapped film thins in a uniform manner. 

From the above calculations we learn that at  the final stages of settling, the drop 
reduces to a spreading layer of fluid that rests over a second layer of ambient fluid. 
These two layers deform under the action of the flow induced by the spreading of the 
drop, and evolve under the influence of gravitational instabilities. Figures 11 and 12 
present characteristic examples where one or the other mechanism assumes the 
dominant role. 

To further investigate the effect of the initial drop shape, in figure 13 we present 
four characteristic stages in the evolution of an initially prolate drop released from 
6 = 8, with 8 = 0.20, h = 1, and r = 0. The evolution of this drop is quite different 
from that described in figure 11 (a )  for E = 0. In the present case, a t  the initial stages 
of motion, the drop develops a trailing tail. Ambient fluid is entrained into the drop 
right above the base of the tail (t = 30). This behaviour is reminiscent of that of 
prolate drops settling in an infinite fluid, and suggests that at  the initial stages of 
motion, the presence of the wall is of minor dynamical importance (Pozrikidis 1990). 
As the drop approaches the wall, it slows down, and starts spreading in the radial 
direction ( t  = 55).  The drop fluid that has escaped into the tail starts discharging into 
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FIGURE 13. Successive stages in the evolution of an initially prolate drop with E = 0.20, falling 
towards a plane wall from a vertical distance S = 8.0, for h = 1 ,  and r = 0. The time is indicated 
on the left of each frame. 

the main body of the drop, and a two-lobed dimple forms at the bottom boundary 
of the drop (t  = 71). The instantaneous streamline pattern shown for t = 55 helps us 
visualize the long-time evolution. Overall, comparing figure 13 to figure 11 (a )  
suggests that the initial shape of the drop can play an important role in the general 
features of deformation. 

Next, we consider the effect of the viscosity ratio A. Thus, in figure 14(a, b )  we 
present characteristic stages in the evolution of an initially spherical drop released 
from S = 2, for h = 5 and 0.10. These figures should be viewed in comparison with 
figure 12, corresponding to h = 1. In the case h = 5,  the top boundary of the drop 
maintains a nearly spherical-cap shape throughout the evolution (figure 14 a) .  This 
is attributed to its pronounced resistance to deformation owing to its high viscosity. 
In contrast, in the case A = 0.10, the top boundary of the drop becomes locally 
concave at an early stage of the motion (figure 14b). As the viscosity ratio is 
increased, the thickness of the film trapped underneath the drop is reduced. This is 
because as the drop becomes more viscous, it requires a longer time for spreading, 
allowing more time for fluid to escape from underneath. Comparing the times 
corresponding to the evolution stages of figures 14 (a,  b ) ,  indicates that increasing the 
viscosity ratio appreciably reduces the rate of drop deformation. 

The instantaneous streamline pattern for the evolution stages shown in figure 
14(a, b )  are similar to those shown in figure 12(b) for h = 1. The velocity profiles, 
however, present certain interesting variations. Let us focus particular attention on 
the thin film trapped underneath the drop, and consider radial velocity profiles a t  

12-2 
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FIGURE 14. Successive stages in the evolution of an initially spherical drop falling towards a plane 
wall from a vertical distance 6 = 2.0, for r = 0, and (a) A = 5 ,  (b)  A = 0.10. The time is indicated 
on the left of each frame. 

different radial locations (figure 15a, b). For A = 5,  the velocity profiles are nearly 
linear within the film, and nearly flat within the drop, figure 15(a). For A = 0.10, the 
velocity profiles are nearly parabolic both within the film and the drop (figure 15b). 
In both cases, the slope of the velocity is discontinuous at  the surface of the film, so 
that the shear stress is continuous across the boundary of the drop. Now, because of 
the slenderness of the shape of the drop at  long times, evident in figure 14(a, b) ,  it 
appears reasonable to speculate that the long- time deformation of the spreading drop 
might be described by a lubrication-type theory. Figure 15(a, b )  suggests that the 
flow within the film and the spreading drop are coupled, and thus they must be taken 
simultaneously into consideration. This is because both the velocity and slope of the 
velocity on either side of the surface of the film have finite values. Put differently, the 
thickness (and thus, the lengthscale) of the flow within the spreading drop is 
comparable with that within the underlying film, preventing dynamic decoupling. 

We now turn to examine the effect of surface tension. Everyday experience 
suggests that assigning to the drop a finite amount of surface tension will prevent 
unrestricted spreading. This is confirmed by figure 16(a, b, c), showing three 
characteristic advanced shapes for h = 1, and r = 0.10, 0.50, and 1.0. For all three 
cases, the drop is initially a sphere with centre at  6 = 2. For all three configurations 
shown in figure 16, the upper boundary of the drop has already attained a nearly 
steady hydrostatic shape. This becomes evident by considering the capillary pressure 
force r'k as a function of the gravitational pressure force x, along the drop contour, 
plotted in figure 17. The fact that over the main body of the drop these pressures 
vary in a linear manner and with slope equal to minus one, indicates the 
insignificance of viscous stresses, and suggests negligible fluid motion and boundary 
deformation. Viscous stresses make significant contributions within the thin layer 
beneath the drop, and up to the rim of the dimple beneath the drop. 

The hydrostatic shape of a drop attached to a wall was described by Bashforth & 
Adams (1883) as a function of two dimensionless parameters. These include the 
apparent contact angle 9 between the drop and the wall, and the parameter ( b / a ) 2 / r ,  
where b is the radius of curvature at the top of the drop, and a is the equivalent radius 
of the drop. The ratio b/a  is a function of q5 (see Hartland 1967). In our computations, 
r is an independent parameter, whereas q5 is a dependent parameter whose value is 
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FIUURE 15. Radial velocity profiles across the film beneath the drop for two evolution stages shown 
in figure 14: (a) h = 5 ,  t = 70, (b)  h = 0.10, t = 30. The apparent discontinuities correspond to the 
boundary of the drop. 

determined by the initial drop configuration, and by the viscosity ratio. Figure 16 
shows that increasing r causes the drop to attain an increasingly more spherical, 
more compact asymptotic shape. The initial drop configuration and the viscosity 
ratio A have little effect on the asymptotic drop shape, and thus on the apparent 
contact angle q5. For instance, computations with A = 1, r = 0.50, and 8 = k0.20, 
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FIGURE 16. Advanced stages in the evolution of an initially spherical drop falling against a plane 
wall from a vertical distance 8 = 2.0, for h = 1 ,  and (a) r = 0.10, t = 70, ( b )  r = 0.50, t = 28.9, 
(c) r = 1 .O, t = 21.05. The drop contour above the indicated horizontal lines has already reached 
its asymptotic hydrostatic configuration, as shown in figure 17. 
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FIGURE 17. The capillary pressure P, = Tk, where k is the curvature of the boundary, as a function 
of P, = x along the boundary of the drop, for the three cases depicted in figure 16. A slope of unity 
indicates a balance between capillary and gravitational forces, and implies negligible fluid motion 
and boundary deformation. 
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FIGURE 18. The evolution of the dimple beneath the drop for h = 1, r = 0.10 (shown in figure 
16a), on a compressed system of axis. Starting from the top, t = 20, 30, 40, 50, 70. 

produced asymptotic shapes visually indistinguishable from those shown in figure 16. 
This behaviour is in agreement with the experimental observations of Hartland 
(1969). 

We saw that in the presence of finite surface tension, the main portion of the drop 
attains a nearly steady asymptotic configuration, and that the long-time evolution 
of the drop is due to the deformation of the thin film which is trapped beneath the 
drop. Thus, the long-time behaviour of this film merits detailed consideration. 
Examining its evolution, it is helpful to keep in mind that the flow within this film 
is driven by three mechanisms: the radial pressure field due to capillary forces, the 
gravitational field due to the discontinuity in density across the surface of the film, 
and the radial pressure field set up to support the drop. We saw that as a drop 
approaches the wall, its bottom part flattens, eventually forming an axisymmetric 
dimple. The evolution of the dimple for h = 1, I' = 0.10 is illustrated in figure 18 on 
a compressed system of axes. Crudely speaking, the dimple may be characterized by 
three geometrical parameters : the radial position of the rim arim, the thickness of the 
trapped film at the rim h,,, and the thickness of the film at the centreline hcentre. As 
soon as the dimple forms, grim increases, while hrim decreases in time in a monotonic 
fashion. hcentre initially decreases, goes through a minimum, and then starts 
increasing, as illustrated in figure 19. This type of behaviour is in agreement with the 
experimental observations of Hartland (1969) (see in particular figures 3 and 5 
corresponding to h = 1.28, r = 0.34). Unfortunately, our numerical procedure is not 
capable of describing the long-time behaviour of the trapped film with sufficient 
accuracy (the volume of the drop at stages shown in figure 16 has already increased 
by 2% due to numerical error). Thus, we cannot assert whether hcentre will keep 
increasing, or whether it will reach a maximum, and then start decreasing, as 
reported by Hartland (1969). A behaviour similar to that shown in figure 18 was also 
obtained for the cases h = 1, and I' = 0.50,l.O. In  these cases however, hcentre 



354 C. Pozrikidis 

t 
40 45 50 55 60 65 70 75 80 

0.16 

0.14 

hcentrc 

0.1; 

0.1( 

0.184 

0.182 

0.180 
25 30 2o t 

15 

FIQURE 19. The thickness of the film at the centre as a function of time, for the three cases 
depicted in figure 18. 

decreased in a monotonic fashion, as shown in figure 19. The fact that increasing the 
inverse Bond number causes hcentre to decrease in a monotonic fashion is in 
qualitative agreement with the observations of Hartland (1969). 

To gain insight into the structure of the flow within the film, in figure 20(a, b)  we 
present characteristic radial velocity profiles for the drop shapes depicted in figures 
16(a, b) .  The boundary of the film is indicated by vertical bars. Close inspection of 
figure 20 (a) reveals the presence of backflow at = 0.11. This is consistent with the 
fact that h,,,,, increases at this stage of motion, and indicates the existence of a 
region of recirculating flow. Indeed, a large region of recirculating flow is evident in 
the instantaneous streamline pattern shown in figure 21. Turning to figure 20(b), we 
notice that all profiles appear parabolic to a good approximation. 

Now, the slenderness of the film beneath the drop suggests that its evolution might 
be described by a film-drainage theory. At this point we wish to use our numerical 
results in order to assess the accuracy of this theory. One central assumption of film- 
drainage theory is that the pressure gradient across the film is much smaller than 
that along the film, and thus the flow within the film is essentially unidirectional, and 
the velocity profile is parabolic. The velocity must vanish along the solid wall, and 
the shear stress must be continuous across the film surface. The surface-shear stress 
on the side of the film is of order ,u,v,/h, where h is the film thickness. On the other 
hand, the surface-shear stress on the side of the drop is of order ,u2 vs/c, where c is a 
characteristic lengthscale of the fluid motion within the drop, and vs is the interfacial 
velocity. For a slightly deformed drop a t  small Bond numbers, c is of order (ah); 
(Jones & Wilson 1978; Yiantsios & Davis 1990). The ratio of the shear stress a t  the 
film surface to that in the interior of the film is thus proportional to hh/c. This is a 
small number provided that h < c / h ,  suggesting that unless the drop is extremely 
viscous, the surface-shear stress a t  the surface of the film can be taken to be equal 
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FIauRE 20. Radial velocity profiles across the film beneath the drop for h = 1 ,  and (a) r = 0.10, 
at t = 70, and (b) r = 0.50, at t = 28.1. The vertical bars indicate the boundary of the drop. 
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FIQURE 21. Instantaneous streamline pattern at t = 69.00 for h = 1, r= 0.10. 

to zero. This is directly verified by figure 20 (b), showing that for h = 1 and r = 0.50, 
dv/dx a t  the film surface is quite small. This, however, is not the case for the case 
h = 1 and r = 0.10, as indicated by figure 20(a), for the lengthscale of the flow within 
the drop c is conspicuously comparable with h. Furthermore, under the assumptions 
of film-drainage theory, the radial velocity profile within the film is given by 

whereas the mean radial velocity is related to the surface velocity by 

v, = l v d x  = 3vs. (3.3) 

In figure 22 (square symbols) we plot the right-hand side versus the left-hand side of 
(3.3) a t  different radial positions along the film surface for the configuration shown 
in figure 16(c). The data fall close to the diagonal line, affirming the accuracy of (3.2). 

A second central assumption of the film-drainage theory is that the pressure within 
the film is related to that outside the film through a pressure-jump condition 
involving gravity and surface tension (although gravity is often ignored). The 
pressure variation within the drop is assumed to be negligible compared with that 
within the film. Stated differently, the drop is viewed as a chamber of constant 
pressure. The pressure within the film is then given by 

PFilm = PDrop - r k  - X. (3.4) 
Substituting this equation into (3.2), and evaluating the resulting equation a t  the 
film surface. we obtain 

In  figure 22 (solid symbols) we plot us predicted by (3.5), denoted by v,FD, versus 
the actual surface velocity computed in our numerical procedure for the configuration 
shown in figure 16(c). Within the film region, the data fall reasonably close to the 
diagonal line suggesting that the conditions of the film-drainage theory are met. 
Similar results pertain to the case h = 1 and r = 0.50, shown in figure 20(b). Of 
course, closure of the film-drainage theory requires a boundary condition for the 
shape of the drop beyond the rim of the dimple. Implementation of this condition 
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FIGURE 22. The mean-film velocity (square symbols), and the surface velocity predicted by film- 
drainage theory (solid symbols), plotted versus the actual velocity at the film surface, for A = 1 ,  
r = 1.0 (see figure 16c). 

presumes knowledge of the corresponding hydrostatic drop shape, and this must be 
found through numerical solutions as previously discussed. 

We saw that all of the assumptions used by the film-drainage theory are met for 
the configurations shown in figure 16(b, c). Unfortunately, the inverse Bond number 
r corresponding to these configurations is not large enough for the asymptotic 
version of this theory a t  large r to be valid (Hartland 1969; Hartland & Robinson 
1977 ; Jones & Wilson 1978 ; Lin & Slattery 1982 ; Wu & Weinbaum 1982 ; Williams 
& Davis 1982 ; Yiantsios & Davis 1990). This may be clearly seen by noting that film- 
drainage theory predicts that at high values of r the radius of the rim is given by 
vrim = (ir);. For r = 0.50 and 1.0 this predicts vrim = 1.15 and 0.82 which are in 
marked disagreement with the shapes shown in figure 16(b, c) .  Unfortunately, 
calculations at high r were prohibited by difficulties in the numerical procedure as 
discussed in $2.  

4. Summary 
We performed a numerical study of the deformation of a viscous drop moving 

normal to a plane wall. We found that when the drop is far away from the wall, its 
evolution is similar to that of an isolated drop moving in an infinite fluid. Depending 
on its initial position and shape, as well as on surface tension, a rising drop may 
deform into a variety of shapes. The theory of non-deforming drops provides an 
accurate estimate for the speed of rise. In the absence of surface tension, a drop 
falling towards a wall keeps spreading in the radial direction, eventually reducing to 
a thin layer of fluid. The bottom of the drop develops a dimple during the late stages 
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of settling. Surface tension restricts spreading, and forces to drop to attain a steady 
configuration. A thinning film of ambient fluid is trapped between the drop and the 
wall whose evolution may follow a variety of protocols. These are in qualitative 
agreement with experimental observations. We were not able to compute the long- 
time behaviour of the trapped film with sufficient accuracy. We were able to affirm, 
however, that when surface tension is sufficiently large, the evolution of the film may 
be accurately described using the film-drainage theory. 

Simultaneously with the present work, Ascoli et al. (1990) performed a numerical 
study of the motion of a viscous drop settling towards a plane solid wall. Certain 
important differences between the present work and that of Ascoli et al., regarding 
the problem formulation and numerical method of solution, were indicated in $2. 
Overall, the conclusions of Ascoli et al. are in general agreement with those of the 
present paper. 
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Appendix A 
When the domain of a flow is bounded internally or externally by a solid boundary 

S,, it is convenient to use a Green function whose induced velocity vanishes on X, 

G,(x, x,) = O  when x lies on S,. (A 1)  

Examples of such known Green functions include those for flow bounded by a solid 
plane wall (Blake 1971), a semi-infinite plane wall (Hasimoto, Kim & Miyazaki 1983), 
a solid sphere (Oseen 1927, p. 108), two intersecting planes (Sano & Hasimoto 1978), 
an infinite circular cylinder (Liron & Shahar 1978), and a solid plane wall with a 
circular hole (Miyazaki & Hasimoto 1984). We shall show that all of these Green 
functions satisfy the symmetry property 

G&, xo) = Gj,(.,? -4. (A 2) 

For this purpose, we consider the flow induced by the translation of a solid particle 
in the presence of the surface S,, and write the boundary integral equation 

where S,  is the surface of the particle. On S,, u is a constant equal to U. Exploiting 
the fact that both u and G(x,x,) vanish when x lies on S,, and using the identity 

j-, T,,(x, x,) = 0, (A 4) 

valid for a point x, which is located outside S,, we reduce (A 3) to 
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This equation is valid within the domain of the flow, as well as on the boundaries of 
the flow S,, and S,. Alternatively, we represent the flow via a single-layer potential 
of the type 

U j ( X 0 )  = - G j i ( X 0 , X )  qr a, (A 6) 
gnu 'I s p  

where q is the density of the distribution. The stress field associated with this 
distribution is given by 

and the surface stress on either side of the surface of the particle is equal to 

where the plus sign corresponds to the external side, and the minus sign to the 
internal side. Recalling that on S,  the velocity satisfies the boundary condition 
u = U, suggests that the interior of the particle ( f i ) -  = P7it where P is the constant 
internal pressure. Equation (A 8) then gives 

(f)' = Pfi-q.  (A 9) 

Substituting (A 9) into (A 5 ) ,  and using the identity 

I,, G&, xo) i j  dS = 0, 

a direct consequence of the continuity equation, we obtain 

Subtracting (A 10) from (A 6) produces (A 2) .  An alternative method for proving 
(A 2) is presented by Jaswon & Symm (1977, p. 80). 

We now proceed to show that the pressure vector p and the stress tensor T 
corresponding to the above Green functions, constitute legitimate solutions to the 
equations of creeping motion. Specifically, we shall show that 

and 

where /3 and g are arbitrary constants, represent acceptable Stokes velocity fields. 
For this purpose, we write the boundary integral equation for flow in a domain 
bounded by an arbitrary surface D and also by S,. With the aid of (A 2) this takes 
the form 

The first part of the integral on the right-hand side represents the flow due to a 
distribution of Green functions, with density distribution f. The second term 
represents the flow due to a double-layer potential with density u. The fact that u can 
be specified on D in an arbitrary manner, implies that the flow (A 12) satisfies the 
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equations of creeping motion. Invoking now the definition of T,  and using (A 2), we 
write 

The differential terms represent derivative singularities and, hence, they constitute 
acceptable solutions to the equations of creeping flow. Thus, the pressure term and 
hence (A l l ) ,  must be a legitimate singular solution to the equations of creeping flow 
as well. In particular, the velocity field (A 11)  expresses the flow produced by a point 
source of strength -S@ in the presence of the bounding solid surface S,. 



where 

The last integrals may be expressed with the aid of standard tables in terms of 
complete elliptic integrals of the first and second kind (Gradshteyn & Ryshik 1980, 
52.58). 

Appendix C 
The vertical velocity U of a spherical drop moving normal to a solid wall may be 

readily extracted from the work of Bart (1968). A slight modification of his equation 

U = 2/9k, 
(24) yields 

k = Qsinha O0 n(n+l) [nYn+2z,-l] 
(2n-1)(%+3) AV,+T, 9 where 

with Y, = 2 sinh (2n+ 1 )  a+ (2n+ 1) sinh2a, 

2, = cosh(2n+l)a+cosh2a, 

V, = 2 sinh (2n + 1)  a- (2n + 1) sinh 2a, 

T, = 4sinh2 (2n+k)a-(2n+ lj2sinh2a, 

where a = cosh-'(S), and h is the viscosity ratio. All variables are non- 
dimensionalized as in the main body of the paper. 
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